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Introduction

In this paper, the finite deformation and stress fields in the vicinity of a pair of spherical

cavities in an all-around infinite rate-dependent solid are examined. The cavities remain

traction-free as a uniform stress state is remotely applied to the surrounding material. The

separation of the cavities is assumed to be much smaller than their radii. This assumption

enables the use of a theory of plane stress to describe the deformation of the thin piece of

material which separates the cavities. The theory used here is similar to that described by

Adkins, et al (1954) for hyperelastic solids.

The problem dealt with here is of potential importance in connection with the rupture

and failure of solids by the micromechanisms of void growth and coalescence. Thus, an

understanding of the interaction of a pair of closely-spaced cavities serves to shed light on

a possible crack-advance process. Such results might also eventually serve as useful guide

to the development of constitutive models that accurately represent the behavior of porous

solids at high levels of porosity. Existing models, such as that proposed by Gurson (1977)

were designed to model materials that contain a sparse population of voids.

Within the linearized theory of elasticity, the problem of the interaction between a

pair of spherical cavities in an isotropic, homogeneous solid was solved by Sternberg and

Sadowsky (1952). They obtained solutions to the global problem in the form of infinite

series, and did not need to assume that the voids were closely-spaced.

In the context of finite elasticity, single-void problems have been examined by several _M

authors, including Green and Shield (1950), Ball (1982), and Horgan and Abeyaratne

(1986). Single cavity problems in rate-dependent solids were examined by Abeyaratne

(1988), who was particulary interested in the prediction of void nucleation. An analysis

pertaining to contiguous voids in a class of hyperelastic solids was also recently done (Blume

(1988)).

In the first section of this paper, some preliminaries on finite deformations of rate

dependent solids are assembled. The particular constitutive class which will be used for
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the boundary-value problem at hand is introduced and discussed. In Section 2, the analysis

of the two-cavity problem is carried out, and in the last section, the results are discussed.
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1. Notation, Preliminaries on Finite Deformations of Rate-Dependent Solids

Throughout this paper, E 3 stands for three-dimensional Euclidean point space. Lower case

and capital letters in boldface designate vectors and (second-order) tensors, respectively.

The same letter in lightface appearing with one or more subscripts will signify the appro-

priate components of the vector or tensor in either cylindrical or Cartesian coordinates.

If A is region in E3 , f E Cm (A) (m=1,2,3,...) signifies that f is m times continuously

differentiable on A.

If 1Z is the region in E 3 occupied by a solid in its reference configuration, a motion is

a mapping $ described by

y = (x,t)= x + u(x,t) on Z, (t > 0), (1.1)

where x is the position vector of a generic point in 1Z, (x, t) is the position vector of its

deformation image at time t, u is the associated displacement field, and t is time. The

region occupied by the body at time t will be called lRt, and at each t, the mapping from

R to RZt is assumed to be one-to-one. The motion of 1Z is taken to be twice jointly

continuously differentiable with respect to position and time.

The solids which will be dealt with here are incompressible and can thus sustain only

locally volume-preserving deformations. The deformation (1.1) is locally-volume preserving

if and only

J=_detF=lonR., (t >0), F=V . (1.2)

Here, F is the deformation gradient tensor and J is the Jacobian. The letters C and G

stand for the right and left Cauchy-Green strain-tensor fields:

C=FTF, G=FFTonZ. (1.3)1

Both C and G are symmetric, positive-definite tensor fields with common (positive) prin-

cipal values. If D denotes the rate-of-deformation tensor, then

D(y, t) = syinVv(y, t) on 7Rt, t > 0 (1.4)-

The superscript T indicatcs transposition.
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in which v is the Eulerian velocity field:

v(y,t) = :(R(y, t), t) on 1t, t > 0. (1.5)

Here the dot denotes the derivative with respect to time (x fixed), and R(y, t) is the inverse

of -(x, t) at time t: i(-(x, t), t) = x for all x in 1?. The rate of deformation tensor is thus

expressible as

D (Y(x, t), t) =1(,x, t)F-(x, t) + FT(x,t)FT(x,t)}.
2.

If a is the Piola stress tensor accompanying the deformation at hand, equilibrium, in

absence of body forces, demands that

diva = 0, aFT = FaT on RZ. (1.7)

In terms of the Cauchy stress field r, which is linked to the Piola stress tensor through

r(y,t) =o(x,t)FT(x,t), y = y(x), (1.8)

equilibrium may be written as

divr(y,t) = 0, r(y,t) =TT(y,t) for all y e Rl (1.9)

Note that inertial effects are neglected in the analysis carried out here.

The stress response of materials at hand is assumed to be well described by a purely

rate-dependent, power-law type constitutive law. In particular, if v and I are material

constants with v > 0, then

r = -pl + vd"D on Rt. (1.10)

where p = p(y, t) is the pressure field which accommodates the constraint of inconpress-

ibility, 1 is the identity tensor, and

d= DI = on 1Zi . (1.11)
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Note that the second of (1.9) is satisfied automatically. On account of (1.8), (1.3), and

(1.6), the Piola stress for such materials may be written as

1]
a = -pF - T + 1vd7  - on 1?. (1.12)

2i

In order to understand the behavior of such a solid, consider a state of uniazial stress.

If the body is in a state of uniaxial stress, then only one stress component, say ril is

nonzero and depends only on time; all others vanish identically in R. One motion and

pressure field which corresponds to such a state is

Y1 (x, t) = A(t)xI, 2 (x, t) = A -/ 2 (t)x2 , 93(x, t)= A- /2 (t)x 3

p(x,t) = iv (3/2 A (1.13)

Here A > 0 for t > 0, and A is a twice continuously differentiable function of time. One

has
="(1 )Y0 1A = ( (1.14)

Further,

A(t) = cexp ds , c constant. (1.15)

For rlTI (t) = rt, (r constant)

A(+)c' + . (1.16)

The response is shown in Figure 1.
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2. The Two-Cavity Problem

If {ei, e2,e 3 } are base vectors of a Cartesian coordinate frame, the solid initially occupies

the unbounded region RZ, described by

7" = {xI Ix-e 31 > 1, Ix +6e 3 > 1}. (2.1)

The coordinate system is chosen so that the holes have unit radii; their centers are located

at x3 = ±6, with 6 > 1. The voids are thus separated by a distance of 2(6 - 1). In what

follows, it is assumed that

1 < 6 < 2; (2.2)

this assures that the cavities are closely-spaced. In order that the cavity surfaces remain

traction free, the nominal traction vector must vanish there:

an = 0 on 1? = {xIIx ±6e 3 1 = 1}, (2.3)

or equivalently, the Cauchy traction vanishes on the dceforniid cavity walls, whence

rTi = 0 oil ORt. (2.4)

In the preceding expressions, n is the outer unit normal vector to ORZ; 1* is the outer unit

normal vector to the cavity surfaces in the current configuration. At, large distances from

the voids, the solid is subjected to a uniform state of stress which has axial syninetry - g

about the x3-axis as well as symmetry about the Plane . 3 = 0. The problem geometry is

shown in Figure 2.

The main purpose of this analysis is to characterize the d(fornation in the material g

which separates the voids. For moderate values of the remotely applied stress field, and for

large times, it appears reasonable to assume that the largest strains and strain-rates occur

in this region, and that rest of the solid might well undergo infinitesimal deformations at

low rates.
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Thus, consider the region R.., that separates the voids in the undeformed configuration

(Figure 3):

R. ={xr<a, -h(r)<x 3 < h(r)}, r= WAx +x2, h(r)=6- V/1-r 2 , (2.5)

and 2(6 - 1) < a < 1 is a real number. Assume also that the (axially symmetric) remote

load in the global two-cavity problem produces normal and shear traction distributions

*,(x 3 , t) and a*(x 3 , t) on the lateral boundary of the disk 1Z., so that the components of

the Piola stress in cylindrical coordinates (r, 9, x3 ) obey

arr(r, X3,t) = an(X3,t),
r = a, -h(a) <x 3 < h(a), t > 0. (2.6)

CrB3(r, X3, t) = aa(Xa,t),

The symmetry of the problem mandates that

= (-X 3 ,t) .r(X 3 ,t) = - (-X 3 ,t), -h(a) < X3 < h(a). (2.7)

The faces of the disk x 3 = -h(r) (0 < r < a) are traction-free. In terms of the

cylindrical components of Piola stress, this last condition is equivalent to

I arr(r, X3,t)h'(r) - ar3(r, X3,t) = , dh

- 3a(r, x 3 ,t)h'(r) - a 33 (r, X 3 ,t) = 0 dr'

At this point, it is useful to recall that for axially symmetric motions, the equilibrium

equations (1.7) in terms of the cylindrical coordinates (r, 9, x 3 ) reduce to
8 1 0
9 0 r r + - (Orr - 9) + a- r3 = 0,

ar r 1 (2.9)

- a3r + a 3 + -7r3 0.
Or 5T 3 r

Using plane-stress approximative assumptions, the motion in the disk R.. induced by

the edge-load distributions a, and a, will be calculated. Owing to the symmetries inherent

in the problem, any motion 9 of R (and hence also of the subregion R. of 7Z) has the form

y (x, t) = R(r, X3, t)Xr /r, . 3(, X3 ,t) = Z(', .r3 , t),
(Q = 1,2) (2.10)

R(r, 3, t) = R(r,-.3, 0, Z(,,.,) 0 -Z(r,- X3,f)

L8



with R = 0 when r = 0, but R and Z nonvanishing and twice continuously differentiable

for (0 < r < a). Further, the nominal stress components obey

Orrr(rX3,t) =Grr(r,-x3,t), aee(r, x 3 ,t) = aqo(r,--r3 ,t), 0"33 (r, x 3 ,t) 033(r,-X3,

0r3(r, X3, t) = -Or3(r, -X3, t), a3r(?,X3,t) 0= -r(,-x3, t);
(2.11)

all other stress components vanish.

Let II stand for the midplane (X 3 = 0) of R?., and if f is a function defined on RZ., f

will be used to denote its restriction to 11. The aim of the following is to characterize the

deformation parameters R and OZ(r, 0, t)/D 3  A(r, t), along with the stress components

&Tr and hee by assuming that

533 =0onl, -ar aeo =0onR.. (2.12)
9.T 3  ( 3

These may be justified on the basis of the geomctry of the problem, the second of (2.8),

and the second of (2.9).

Integrating the first of the equilibrium equations (2.9) across the thickness of TR leads

to

1 r r + -(Orrr- 00) dX 3 + r 3  r 0. (2.13)

rh(r) Or r 3z =-h(r)

The first of (2.8) and the assumptions (2.12) enable

-rr + (, br - &o0) + -a,." = 0 o 11. (9.14)

The boundary condition in the first of (2.6) correslpon(ls under the l)rescnt circumstance

to the stipulation that

&rr(a, t) = (7,,1(a, 0, t). (2.15)

Note that the integral of the shear traction cr8 across the thickness vanishes. by virtue of

the symmetry condition that appears in the. sccond of (2.7).

With a view towards expressing the stresses c, and & e in ternis of the dcformation

parameters h and ,, note that (2.10) implies that the nonzero cvlindrical components of

9



the deformation gradient tensor are

Fr,, = RI,,, Fee R/r, 33 = AZ(r,O,t)/Ox3 on I. (2.16)

Here and in what follows, OR/Or - ,r, while OR/Ot = R,t.

Incompressibility demands that det F = 1 on II, whence

A= - on II. (2.17)
R,rR

The stress components are now found from (1.12) to be

&rr + P d'dZft -7--, oree dR R(2.18)

&33= -vd d t + k] ,I

and

R ,-tR,t
d= 2 ( + . o) on I. (2.19)\R,,. R R,.R)

The last of (2.18), in conjunction with the planc stress assumption appearing in the first

of (2.12) gives

-vd" + on l, (2.20)

whence
f,., = t  +2 1 2

rr = vd- +2  J 0>9e = vd" 2- + -5 (2.21)

On entering (2.20) into (2.14), one is led to a nonlinear, homogeneous partial differential

equation for h with nonconstant coefficients. This equation involves the second derivative

of f? with respect to r, and its first derivative with respect to time. The boundary condition

(2.15) requires that A conform to

v P +2 = (a, 0, t). (2.22)

10



Of particular physical interest in the problem at hand is the large-time behavior of

R. This is perhaps when the neglection of inertial effects is most valid. It is reasonable to

assume that R is of the form

R(r,t) = A(t)q(r), 0 < r < a, t > 0, (2.23)

with A and q twice differentiable. In this case, (2.19) gives

A dAAd = dA (2.24)

and (2.21) leads to

m(t) m(t) ,dq
&rr(r, t) ' rq (2.25)

q'(r) q(r) o H, dr'

in which

m = M1 1 2
. (2.26)

Substitution from (2.25) into the equilibrium equation (2.14) and rearranging leads to the

following ordinary differential equation for q:

-r [qq" + (q') 2] + qq' + r hiqq'=O, 0<r<a. (2.27)

If one sets

v(r) = q(r)q'(r), 0 < r < a, (2.28)

then (2.27) reduces to the first order equation

v- (I+ h) v = 0, (2.29)

the solution to which is given by

v(r) = crh(r). (2.30)

Here, c is a constant. Bearing in mind that R(0, t) = 0, one finds on integrating (2.2S)

that

q(r) = 2 v(p)dp. (2.31)

11



Appealing to the definition of h in the last of (2.5) and the expression for in (2.23), one

has
2

)= A(t) + (1 - _ (2.32)3232

Plots of 1 versus r for fixed t are shown in Figure 4.

The function A(t) is related to *(a, 0, t) through (2.22), which now gives
{ q'(a) 6--'Y+ C ot *

A(t)=exp I I 3v6 a (a,o,s)ds
b a=- v -a (2.33)

qa a2 + 2(1 - a2 )3 / 2 
- 23v  

3

If O,, is time-independent, A(t) is an exponential function of time, while if a,, is a linear

function of time, A(t) is a constant multiple of the function A(t) in (1.16), which is plotted

in Figure 1.

According to (2.32), (2.17), the out-of-plane stretch A is given by

1(r,t) = A-2(t) - 1 (2.34)b_ /f _r2 '

which, on account of the last of (2.5) may be written as

(r1t) = 1 (2.35)
A 2 (t)h(r)'

The boundary x3 = h(r) is thus approximately mapped to the plane Y3 = Z A-(t) and

the material in between the spheres is flattening. Figure 5 shows A versus r, while Figure

6 shows the deformed disks for various values of A(t) at fixed t. In particular, note that

-(O,t) = A 2 (t) (b - 1)' (2.36)

is the maximum value of A at fixed t; the minimum occurs on the edge of the disk (r = a).

As far as the stresses are concerned, the Nominal stresses and Cauchy stresses are

found from (2.32), (2.21), (1.8):

&r = re(t) 6r - r v/1 - Ote9 = 2rz(t)r

r2 + (1 r2) 3 / 2  (1-2 + r2)3 1 - (2.37)r 3 -3 V-3

Trr =t0 = 711(t),

with m given by (2.26), (2.32). Note that the Cauchy stresses are constant.

12



3. Discussion

In this analysis, it was assumed that the material between the voids does not rupture. This

was reflected in the stipulation that R vanishes at r = 0. If this requirement is removed

and replaced with R > 0 at r = 0, the possibility of a hole opening at the center of the

disk is admitted. In this case, in order that the newly-formed hole be traction-free, one

demands that

arr = a3r = 0 if r = 0. (3.1)

Pursuing the plane stress analysis exactly as before leads one to

R(r,t) = A(t)M6.2 + 3 (1 - r2)3/2 - b, (3.2)

with A > 0 a function of time and b constant, b < 2/3. The boundary condition (2.22)

must hold again in this case, but in place of the requirement that R(0, t) = 0, one has from

the first of (3.1) that

&rr(0, t) -- - + 2 - - ] 0. (3.3)R,r R,r r=0

The second of (3.1) is satisfied in average across the thickness by virtue of symmetry.

However, the condition (3.3) can be met only if b = 0 so that planc stress deformations of

the form (2.23) with holes emerging at the origin are not present.

Although no restrictions (other than symmetry conditions) were put on the remote

stress field in the global problem, the plane stress assumptions are perhaps more believable

in situations in which the disk R?. is itself in a tensile field (so that it is thinning);

presumably this situation would correspond to remote tensile loading.

The validity of the plane stress assumptions is inreascd if boundary of the disk R.

is chosen so that the magnitude of the shear traction as(x 3 ,t) is minimized across the

thickness of IZ.. As yet, a means of connecting the tractions a,, and a. with the remote

loading is unavailable; this is the subject of future work. The effects of inertia on the

13



deformation of 1Z. are also being examined; plane stress may not be a valid assumption in

the dynamic case.
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Figure Captions

Figure 1: Response of the power law viscous solids in uniaxial stress;

MO(t = A(t)exp { D1(y1

Figure 2: Problem geometry.

Figure 3: The region TZ..

Figure 4: R versus r.

Figure 5: The out-of-plane stretch A versus r.

Figure 6: Deformed disks.
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